His 1st Japan.LLC Blog

His First Japan 合同会社のブログです。

AIに手を出してみる。TensorFlowで学ぶディープラーニング入門

今回は、Chapter3-3に記載されています、「多層ニューラルネットワーク」について書きます。

皆さん、こんにちは、こんばんわ。

His First Japan 合同会社 代表社員の字引淳です。

f:id:a-j1b1k1:20170618215400p:plain

最近は、SNS広告やら、新規事業のサービスの資料作成やら、OpenStack環境構築の勉強やら、このAIの勉強について、優先度が下がっている。

優先順位は、現在の事業についてが第一位、新規事業についてが第二位、その他今後のために学ぶことは第三位になる。

SNS広告やら、新規事業のサービスの資料作成やら、OpenStack環境構築の勉強は新規事業に関することなので第二位になります。

このブログのAIについては、第三位になってしまうので、どうしても、集中的に時間と学習を突っ込むことができないのが残念です。

今回は多層のニューラルネットワークについてです。

Chapter03 - 1の場合は、直線で分類できるものでしたが、この場合は、直線での分類が困難な事例です。

イメージの結果の項目のように一松模様のような分類を行う場合は、単純な直線による分類が困難です。

f:id:a-j1b1k1:20170805213851j:plain

今回から、ニューラルネットワークの隠れ層と出力層に色をつけました。

隠れ層1:赤 特徴量を取り出す層

隠れ層2:青 隠れ層1の結果を受け、XOR回路による判定機能

出力層:紫 隠れ層2と合わせXOR回路による判定機能

 

これでChapter3が終わりになりますが、ここでやっていることは、①の枠内でのことに終始しています。

 

このように図を書いてまとめてみると、著者の意図が見えてきますね。

 

最後に、確認のために、前回のサンプルも色を付け直しました。

f:id:a-j1b1k1:20170805214204j:plain

隠れ層1:

出力層:

確かに、大きな変更が入っているのは、この部分だけということがわかります。※ ③の処理は、欲しい結果が違うので、差分として考えていません。悪しからず。